(4x^2-10)+(8x+5)+(x^2+2x+10)=180

Simple and best practice solution for (4x^2-10)+(8x+5)+(x^2+2x+10)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^2-10)+(8x+5)+(x^2+2x+10)=180 equation:



(4x^2-10)+(8x+5)+(x^2+2x+10)=180
We move all terms to the left:
(4x^2-10)+(8x+5)+(x^2+2x+10)-(180)=0
We get rid of parentheses
4x^2+x^2+8x+2x-10+5+10-180=0
We add all the numbers together, and all the variables
5x^2+10x-175=0
a = 5; b = 10; c = -175;
Δ = b2-4ac
Δ = 102-4·5·(-175)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3600}=60$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-60}{2*5}=\frac{-70}{10} =-7 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+60}{2*5}=\frac{50}{10} =5 $

See similar equations:

| 5-7r=r-14 | | 17t−8t−4t=20 | | 7r+5r+5r-12r=5 | | (2/3)+6-(2x=(-6) | | 46=t-19 | | 12÷84=n | | -y=8.7 | | 100(z-0.2)=10(5z+0.8) | | 0.5x+x=495 | | 19b-18b=13 | | 84÷12=n | | 1+k=-11+4k+6 | | 6+a/3=8 | | 19b−18b=13 | | 1/5m-1/2=3/4 | | 3+8c=43 | | 82÷12=n | | 0=4/3x | | (3y-2)+y=60 | | k−-320=931 | | 16-7w=w+14-6 | | 2-(x+5)=3+(x+3) | | 1,1/2y=6,3/4 | | y=4/3(0) | | 12e=108 | | 3x+10+2×=2(x+8) | | -50=h+735 | | 5+3(2+x)=14 | | x=6=-4 | | 5=121x | | 2x+18=16-(x+7) | | 2x+4(-6+3x)=14x-24 |

Equations solver categories